- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Jun‐Liang (2)
-
Long, Jeffrey R. (2)
-
Pedersen, Kasper S. (2)
-
Cheng, Peng (1)
-
Clérac, Rodolphe (1)
-
Durand, Etienne (1)
-
Feng, Xiaowen (1)
-
Greer, Samuel M. (1)
-
Hill, Stephen (1)
-
Keller, Lukas (1)
-
Li, Liang (1)
-
Liu, Xiaoqing (1)
-
Meihaus, Katie R. (1)
-
Meng, Xixi (1)
-
Mondal, Abhishake (1)
-
Oyarzabal, Itziar (1)
-
Rogalev, Andrei (1)
-
Shi, Wei (1)
-
Tressaud, Alain (1)
-
Wilhelm, Fabrice (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide‐free hard magnets. Zero‐ and one‐dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom‐up nature of their synthesis. Here, we present two one‐dimensional cobalt(II) systems Co(hfac)2(R‐NapNIT) (R‐NapNIT=2‐(2′‐(R‐)naphthyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, R=MeO or EtO) supported by air‐stable nitronyl nitroxide radicals. These compounds are single‐chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three‐dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.more » « less
-
Liu, Jun‐Liang; Pedersen, Kasper S.; Greer, Samuel M.; Oyarzabal, Itziar; Mondal, Abhishake; Hill, Stephen; Wilhelm, Fabrice; Rogalev, Andrei; Tressaud, Alain; Durand, Etienne; et al (, Angewandte Chemie International Edition)Abstract Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes,trans‐[MIVF4(CN)2]2−(M=Re, Os), obtained from their homoleptic [MIVF6]2−parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy oftrans‐[ReF4(CN)2]2−as compared to [ReF6]2−, reflecting the severe departure from an ideal octahedral (Ohpoint group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials.more » « less
An official website of the United States government
